Your Industry

The Blog

3 Reasons Data Science Fails in Sales Organizations

3 Reasons Data Science Fails in Sales Organizations

Every day of the week, it seems that a new “big data” company comes on the scene. Some of them are good and provide real benefit. Others prey on the people without a mathematical education and their fears of the unknown. Calling these guys pond scum or snake oil salesmen seems too cruel to pond scum and purveyors of even the finest snake oil.

At its very best, great data science can serve as a foundation for tremendous efficiencies. When it works, organizations can achieve greater sales and lower their costs. At its worst, when data science is misused, misunderstood or contorted into “management by numbers,” great confusion results and sales leaders’ abilities to impact results are lessened. So many organizations are struggling to define the proper roles that data science and analytics should play in their sales organizations. As such, it’s important to frame the proper roles of data science in our organizations:

Should: Help you make better decisions

Nearly every major decision made throughout a sales organization can be influenced by data science: Which opportunities and leads should get more attention or less attention. Where we should focus our sales, marketing or management resources. Which salespeople need more coaching and training. The variables that created the insight should be clearly understood, so that your colleagues have faith in the decisions you make.

Shouldn’t: Attempt to make those decisions for you

Data should influence decisions, but you were hired to be the final authority on those decisions. No statistical models will ever be driven by perfect data and no model can ever incorporate every conceivable data point. As such, a valuable data model should never produce a perfectly binary output telling you to absolutely do something or not. There is no silver bullet. There is no holy grail. An analytics person who tells you that there is only one way to accomplish your end goal is misinformed.

Should: Help you innovate

A scientific understanding of your team’s sales data will open your eyes to the areas in need of the greatest improvement. When the solutions to these challenges aren’t obvious, data science can empower sales leaders to effectively measure the results of small controlled experiments.

Shouldn’t: Be seen as a replacement for creativity

Data science isn’t a crystal ball that magically shows the future. At its core, it finds historical patterns of data – often very subtle patterns – and compares them to current data to give insights about most likely outcomes. It is not management by numbers. The best sales leaders use data science for the direction that it provides, but constantly look for creative approaches to motivating their sales teams, engaging their prospects, and scaling their processes.

Should: Empower your salespeople

The best salespeople are driven, smart and competitive. They need to win. They are constantly looking for advantages that will help them win the next sale, beat their competition and climb the leader board. Great data science can bring those advantages. It can help focus their limited time on those leads or opportunities that are most likely to win. It can help them remove their own blinders, and give them insights that will position them to play to their strengths and minimize their weaknesses.

Shouldn’t: Replace their humanity

Data science should never be conflated with a loss of humanity. There is no argument that should ever be accepted that would suggest that data science and traits that embody the best humans and the best salespeople – empathy, dignity, perseverance, intelligence, strength, humor – are somehow mutually exclusive. Data science can identify your best prospects. It can identify strengths and weaknesses in your deals. It can find very subtle weaknesses in your sales approach. It can even pinpoint causes for having bad sales data. Data science, however, cannot make an emotional connection to a prospect. It can’t carry a conversation, convey the value of your offering, or address competitive differences. Maybe one day robots will replace all of us, but they aren’t here today.

Jim Dries is the CEO of Austin, TX based piLYTIX – a Data Science as a Service company.

What Exactly Is Sales Enablement

What Exactly is Sales Enablement?

Sales enablement is suddenly very hot!

Just a few years ago, very few companies had a sales enablement leader. Almost no one had a full team. Now, most large B2B sales teams are investing heavily in sales enablement departments.

I talk to sales enablement professionals every day of the week, but I still struggle to define exactly what it is. I can’t define sales enablement because I am not a sales enablement practitioner and there is an awful lot of debate in the community of practitioners around what the role should entail. Like any nascent stage business discipline, there continues to be rapid evolution of the role.

I think that the word itself – enablement – is driving some of the confusion. The word is open to interpretation. And has it ever been interpreted differently by different people! When we google “sales enablement” we find scores of varying and complex definitions.

I debated this topic over breakfast with a founding member of the Sales Enablement Society a few weeks back. He has been an influential thought leader in this space for a long time. He opined that much of this debate could have been avoided if we had used a simpler term than enablement from the beginning. He suggested a term that gets to the heart of what everyone in this field is ultimately striving to achieve for their companies:

“Sales Productivity.”

Now, when I go back and review all those complex definitions of the function, productivity seems like the perfect word.

But even if everyone agrees that productivity is the desired goal of the sales enablement function, there are still basic structural questions lacking consensus. These outstanding questions threaten to prevent the function from achieving its full potential and revolve around things like reporting structures and the level of interaction with other functions (for example, To whom should the enablement function report? What is the “correct” level of interaction with other departments like marketing and H.R.?). The question that my company often discusses with enablement professionals is the role that data science and analytics should play.

Some sales enablement leaders see data science and analytics at the core of their roles. Others, not so much.

If sales enablement is inherently about driving sales productivity, shouldn’t the sales enablement function be tasked with a very detailed understanding of the driving forces of success and failure for their companies? Why certain opportunities win and others lose? Why some salespeople successful and others decidedly not? Why certain goals are achieved and others are missed? What value sales technologies are bringing to the company? What content is needed to drive one sale or another?

The answers to these questions are never black and white. They can only be found through a scientific examination of a confluence of several different data points: buyer attributes, the salesperson’s strengths or weaknesses, content that was used, activities, technologies that were used, stage velocity and on and on.

To drive true productivity, the first order of business should be to have a thorough understanding of a company’s drivers of sales success and failure. As sales enablement practitioners continue to debate their roles and increase their influence within their organizations, data science must become a driving force.

Jim Dries is the CEO of piLYTIX, a sales enablement technology company.

The Story of the Best Business Technolgy

The Story of the Best Business Technology. Ever.

Here’s a fun story. There is a case study that is currently on the website of a sales technology company. Other than having a mutual client, our company has no affiliation with them, so we’ll just call them AwsumTek. Unless we had systematically dissected all of the claims in AwsumTek’s case study and compared them to our mutual client’s raw sales data, we would have dismissed the study as totally unbelievable. But our examination was thorough. Every single claim that this company makes is 100% factually accurate. It’s really a fantastic story.

The case study focused on a pilot launch of AwsumTek’s sales efficiency product. AwsumTek’s website claims to make every sales rep more effective from the moment they first start using the product. They promise that the technology will: Increase sales! Reduce Cycle Times! Increase Deal Sizes! Remove All Predictability Challenges!

The case study goes like this: AwsumTek’s product was piloted with 1,000 sales opportunities. At the end of the pilot, here’s what they found:

  • The sales team won 898 of those 1,000 opportunities. 102 of the deals lost or were still open at the time of publishing. Allow us to take the liberty of doing that math for you: This equates to an 89.8% win rate. This is especially staggering considering the company’s 5.7% average win rate over the same period.

  • The average cycle time on these 898 winning deals was only 13 days, which compares to the company’s average cycle time of 79 days!

  • The average price discount on these deals was less than 1%! WOW! The company’s average price discount was 12.5% over the same period.

Shortly after AwsumTek published the case study, our mutual client asked us to review their sales data and make sure that the data supported the claims made in the case study.

We reviewed the case study word by word.

At the end of our exhaustive review, we can definitively say that there was not a single factually inaccurate claim on the website or in any of the case studies! Every data point that the company provided is provably correct. We assume that the same can be said of the dozen or so other case studies on AwsumTek’s website. There’s a nice case study library right in the middle of their homepage.

Sign me up, you say? But wait! There’s more! These guys must really believe in their product because they are willing to give it away for FREE for thirty days! F-R-E-E! Zero cost whatsoever and they assume all the risk if you don’t like it!

We sell a mathematics-based sales technology, so we should know a good technology when we see it. We had been searching for the Holy Grail and were sure that we had found it!!

Except there’s one tiny detail that we uncovered (unraveled, really). And – ouch – this was a tough one.

It’s all a steaming pile of BS.

AwsumTek’s case study didn’t directly make any specific factually inaccurate claims. It’s what they didn’t say that is causing the gut-wrenching stench that you are probably starting to get a whiff of.

They didn’t lie. They were just expecting the readers to connect a few creatively placed dots and lie to themselves. Shockingly, it turns out that this happens all the time. Are marketing classes suddenly all teaching from the same text book? Maybe we just weren’t paying close enough attention.

This creative storytelling school of marketing has an unflappable willingness to cleverly use data to convince the audience of the powers of whatever they are selling. In this case study and their supplementary messaging, all the textbook’s dirty tricks are on display.

Comparing Apples and Antelopes:

AwsumTek paints a picture of legitimacy by giving us a few details that one might expect to find in a scientific study. They tell us that they are looking at distinct populations – one of which used the technology (indicative of a scientific test group) and one that didn’t (control group). They never tell us that there are major differences between the test group and the control group (which of course there are); That would obliterate the narrative that they were trying to tell us. Instead, they slyly mention lots of other data point that we would see in a scientific study. The message is, it’s an apples-to-apples, scientific study! Now stop asking questions so we can get to the good stuff!

Of course, they skip over a few details to on their way to the good stuff. Comparing an 89.8% win rate and a 15.7% win rate was totally irrelevant. The company piloted the technology with the renewal managers for a product line that has almost no viable competition. For several years running, the client had successfully won approximately 90 percent of these renewal opportunities…exactly what they produced during this pilot with the new technology. Likewise, the cycle time and price discounting levels hadn’t budged when we look at this product line’s renewal history over several years.

My, What Big Numbers You Have:

Big numbers tend to strike a psychological nerve. 1,000 sales opportunities and the 898 wins feel like big numbers. AwsumTek’s clever marketers hit us with these stats in the first paragraph to ensure that our collective subconscious would be screaming “This is legit!” For most companies in their target market, 1,000 sales opportunities is a healthy subset of the total opportunity pool that they would see in a year. However, this case study was done on a multinational company with dozens of business units and products. 1,000 opportunities represented a drop in the bucket for this company which had tens of thousands of opportunities open at the time of the “experiment.”

Trust us! But if you don’t its free anyway!

By combining these case studies with “free trials,” marketers are encouraging prospective buyers to think that they have nothing to lose. Anyone would be crazy not to try it! But once again, we have to look at what isn’t being said. They’re not accepting your money today, but they certainly aren’t going to take on any expenses either. The free trial business model is a do-it-yourself model. In giving away their products for free, they know that a prospective buyer’s IT resources will be taxed over the trial period. This comes at cost of doing something more valuable for the company over that time. This opportunity cost is still a cost, and they know that many people will be hell bent on making something work when they have made an investment – regardless of the lack of value that has been gained at the end of the trial period.

In the end, AwsumTek’s marketing tactics should draw suspicion. The tactics don’t necessarily prove that their product is useless. That’s for their clients and prospective buyers to decide. However, until buyers start asking tough questions about what hasn’t been stated in the case study and how much a free trial really costs, the tactics are sure to continue.

Frequently Asked Questions

  • help
    Why don’t you list your products or services or pricing?

    Because we would rather talk about you.

    Do any of the challenges at the top of the “About You” section speak to your needs? Is there something particularly unique about your sales organization that makes solving these challenges difficult? If the answers to these questions are ‘no,’ our products and services and services won’t be relevant to you. Nor would a one-size-fits-all pricing scheme. On the other hand…

    If something you saw resonated, let’s talk.

  • help
    Who are your target clients and what exactly do you do for them?

    Take a look at the “About You” section. If you can identify with a specific industry or specific sales enablement challenges, we might be a good mutual fit. Our team of mathematicians have designed a technical platform that helps our users address these issues.

    Most of our users employ between 50 and 500 full time sales people who directly enter data into a CRM system. We have worked with companies as small as 10 salespeople and as large as 1,500.

    However, we aren't for everyone. So that we don’t waste your time or ours, let’s also consider that we likely won’t fit with very early stage start-ups or companies that have just a small handful of sales reps. Likewise, we won’t likely add significant value to sales leaders who claim to have a perfect understanding of their perfectly maintained datasets.

  • help
    How are you different from your competition?

    We know of roughly 50 software companies who play in the loosely defined space of “sales analytics.” They are pretty easy to find, but if you’d like, we would be happy to send you contact information for all of them. We will let them define themselves and encourage you to reach out to them if you are interested.

    We don’t spend a penny on competitive intelligence and wouldn't share our opinions of another company if we had any. We offer a smart product for smart business leaders and their teams. If you have found this page and feel that you meet our criteria, let’s talk about your needs and see if we can address your challenges. Worst case scenario, you will walk away from an initial conversation with us with lots of contact information. If you decide someone can address your sales challenges better than we can, we wish everyone good luck.

  • help
    What data is used in your predictive models?

    piLYTIX extracts data directly from your company’s CRM system or data warehouse. Our models examine fields that are native to the data source (account information, opportunity information and activities) as well as external technologies that have been integrated (lead scoring or proposal creation software, as examples).

  • help
    What CRM fields do you use?

    It would be a dreadful idea to have a predictive model that presupposes any fields or combination of fields as statistical predictors of success (or failure). That would compel you to modify your data structure to our needs (which you don’t have time for) or the output would be of questionable value.

    piLYTIX’s data scientists will systematically analyze every field within the client’s CRM system to determine which fields are statistical predictors of close (and which are not), allowing your data to tell the mathematical story. When sufficient data exists, individual reps’ and individual managers’ tendencies heavily influence our mathematical models.

  • help
    So what’s in your “secret sauce?”

    We hate this term and we aren’t shy about saying so. There is absolutely nothing “secret” about our mathematical approach. If there was anything about our approach to sales data that our users didn’t understand, they wouldn’t trust the output. If they don’t trust the output, they won’t use the software. If they don’t use the software, they won’t renew their contracts. If they don’t renew their contracts, we don’t make money. And that would be a problem.

    All of our users understand exactly what is driving the insights that our technology produces. As we learn about your unique data, you will learn about our models and how they will be adapted for you to be successful piLYTIX users.

    Other tired clichés that we detest: “black box” and “proprietary algorithm.”

    We feel that describing our offering in 21st Century buzzwords or shrouding our output in mystery insults the intelligence of our users and prospective users. Bad way to start a relationship, no?

  • help
    If you don’t predefine the fields that your model uses, how will we know if there is any validity in your models?

    There will never be any mystery about how our models work. When analytics companies are viewed as a magical “black box” solution, their output is always viewed suspiciously. By showing you exactly how our models work, you will feel more confident in the predictions and the prescriptions.

  • help
    Can’t I just use the tools that are native to my CRM to solve these challenges?

    You can try and we wish you good luck. It’s probably bad form to answer a question with a question, but if you could just use your native CRM tools to solve these challenges, why are they still challenges?

  • help
    Are you more expensive than other “sales analytics” companies?

    Yes.

  • help
    Why?

    Couple reasons.

    If you are talking with us, there is something unique about your sales data. A one-size-fits all approach to predictive sales analytics, while relatively inexpensive, will underwhelm you. If your sales data isn’t all that special or unique, we’ll gladly take your money but chances are good that you will be overpaying us.

    Also, lots of companies use “predictive analytics” to describe their approach. If a ninth grade algebra student could recreate the mathematical approach of other solutions, we might want to consider a different label.

  • help
    You don’t offer a Trial Period? Why?

    See above. That’s a lot of work.

  • help
    What kind of ROI do you guarantee?

    We don’t.

    Lots of software companies make bold ROI promises. We are a math company at our core, though. We can’t claim ignorance of the difference between correlation and causation. Too bad! It would make for a nice marketing piece.

    You were hired to grow your business and you will simultaneously pull lots of levers to achieve your desired outcomes. You will add sales staff, you will tweak your comp plans, and you will use other sales technologies. We will never have line of sight to many of those changes. Given that we can’t see – and certainly can’t measure – the impact of some of these other changes, it would be totally disingenuous of us to take full credit for all the growth that occurs while you are using our tools.

    By the way, please be wary of any analytical solution that quantifies a guaranteed a return on your investment. It suddenly seems a bit shady, doesn't it?

  • help
    No trial period? No ROI guarantee? Is that right?

    Yes. If you feel that this is risky, we can help mitigate the perceived risk in ways that no other software provider will consider.

  • help
    Wow! Handful of References at least?

    Definitely! If it’s your absolute final step in your evaluation process, yes. Until then, lets pump the brakes. Our clients are busy and they pay us a lot of money. We’ll use them for our commercial gain only when we are pretty sure that real commercial gain will result.

    By the way, start tracking your own reference requests and see if you find any interesting patterns…

  • help
    Our business is basic. I just need to manage activities. Marketing feeds us leads and we can manage to a very basic equation: ‘X’ number of leads times ‘Y’ numbers of calls, and I will hit my number. How are you going to help us?

    We won’t. But good luck. Traditional metrics of pipeline health are directionally fine. Until they’re not.

    All of our users understand that there is some aggregate correlation between activity levels and win rates. Most of the people who hired us were hired by their companies to improve results. And so they want to go deeper than tired old industry metrics for pipeline health. They want to know which opportunities are mathematically most likely to close and which opportunities need management focus. They also know that if they coach and train to their reps’ individual strengths and weaknesses, they are much more likely to succeed.

  • help
    Do you use macroeconomic forecast data to help influence your predictive sales models?

    Nope. It’s a really bad idea to do so. We know that this flies in the face of what those really expensive sales or operations consultants told you. Sorry! They gave you a bum steer. If you allow us just five minutes, we will be able to convince you how misguided their advice was.

  • help
    My managers are all seasoned leaders. They understand sales rep biases and don’t have their own.

    Ask yourself has one of my sales managers ever said anything like:

    “Ed’s committed deals always come in, but they never seem to be on time, so I will put half of them this month and half next month.”

    “Diane is a sandbagger, but she always comes through in the end, so I will just put her at quota.”

    “Bob is always overly optimistic, so I am going to knock his number down 25%.”

    “Karen is typically spot-on with her forecast, but this deal has been in the pipeline for too long so I don’t believe it.”

    “This prospect purchased at his previous company and loves us! This deal will definitely close!”

    Unless your managers lack basic humanity, they, too are prone to biases. It’s not a good thing or a bad thing. But these biases (or blinders or tendencies – call them what you will) will prevent a manager from truly understanding potentially hidden strengths and weaknesses of reps and their deals.

pi

LYTIX

piLYTIX was founded in 2013 to help global sales leaders address some of their most vexing challenges.

Successful sales pipeline management and sales talent management have historically been looked at as problems of an artistic nature. piLYTIX and its team of mathematicians see these issues as a series of interwoven—but eminently addressable—mathematical challenges.

Catering to companies and industries underserved by traditional analytical sales tools that tend to take a one-size-fits all approach, piLYTIX takes a consultative approach to onboarding and serving our clients.

piLYTIX works with your data as it exists and delivers to your sales organization deep, actionable insights into each opportunity in your pipeline and each sales rep on your team.

Redefine:

Pipeline Risk

“Pipeline risk” has traditionally been associated with those deals in danger of surprise losses after much effort. piLYTIX encourages our users to also include the opposite end of the spectrum: those deals that should close but are not receiving the proper attention.
Resources

Redefine:

Player-Coach Relationship

Player-Coach discussions must focus less on unscientific "gut feels" or "commit forecasts" and focus more on pulling the levers that have been quantifiably identified to lead to a higher closing likelihood.
Resources

Redefine:

Your Sales Forecast

Chaos generally ensues when a company unexpectedly misses a sales target. A revenue miss, however, needs to be seen as a symptom of underlying issues. These issues need to be addressed immediately!
Resources

Redefine:

CRM Usage

The big data revolution has resulted in too many organizations focusing on data quantity at the expense of data quality. Without measuring CRM usage, companies can only guess at the efficacy of the standards in place – or the most efficient avenues to improve data hygiene.
Resources

Our Team

Jim Dries

Chief Executive Officer

Jim Dries founded and serves as the CEO for piLYTIX. Jim's career began as an investment banker at BofA Merrill Lynch (formerly Banc of America Securities), working on more than $8 billion in equity, debt and M&A capital raising. After leaving Wall Street, Jim led sales, marketing and product management teams both at the Corporate Executive Board and Clubessential.

Jim has a B.A. from Yale University and an M.B.A. from the University of Chicago.

Kate Ivers

Chief Operating Officer

Kate Ivers serves as COO for piLYTIX overseeing all aspects of company operations. Kate's career has spanned law, operations and data security. She began her career as an attorney in the Intellectual Property group at Wildman, Harrold, Allen and Dixon. Recently, she served as the SVP of Operations and General Counsel for Clubessential where she oversaw product implementation, client services, human resources, legal and accounting.

Kate has a B.A. from Yale University and a J.D. from Loyola University (Magna Cum Laude).

Marcelo Labardini

VP Development & Operations

As an insatiable technologist and passionate mentor, Marcelo brings more than 15 years building highly scalable technology platforms from early stage startups to enterprise level corporate environments. Prior to joining piLYTIX, Marcelo held engineering roles at IBM, Spredfast, BMC, Boundary and most recently Blackboard.

Marcelo is an enthusiastic lifelong learner who loves to remain hands-on writing code, attend conferences and engage with the Austin tech community. On the rare occasion he's away from the office, you may find him 60 feet under the waves SCUBA diving while visiting family in Mexico or Curacao.

Marcelo has degrees in Biochemistry and Computer Science from UT Austin.

Hendrik Kits van Heyningen

VP Data Science

Hendrik Kits van Heyningen serves as VP of Data Science for piLYTIX, overseeing all aspects of the predictive modeling and analytics that power the piLYTIX software product. Hendrik’s career began as an engineer at KVH Industries, Inc. (Nasdaq: KVHI), where he worked on R&D for inertial navigation systems, inventing and testing a novel approach to magnetometer calibration. Recently, he was employed at Analytics Operations Engineering, Inc., where he worked on scheduling and pricing optimization projects before ultimately taking leadership of the data science team that had developed the original piLYTIX models.

An accomplished musician, Hendrik has performed as a pianist at Carnegie Hall, and he served as Music Director for the Yale Davenport Pops Orchestra.

Hendrik has a B.S. in Mathematics and Physics from Yale University (Summa Cum Laude, Phi Beta Kappa).

Blake Glatstein

VP Online Solutions

Blake Glatstein oversees client online solutions from first impressions to user success. The third employee of piLYTIX, Blake has held roles in product development, sales and marketing and general management. Blake began his career at CEB in Washington, DC and quickly moved into sales leadership roles at Ajilon and Dallas Medical Supply. A serial entrepreneur, Blake founded, grew and sold his first company while still a student at Washington University.

Blake has a B.S. from Washington University in St. Louis.

Apply

Interviewing with piLYTIX

You will be asked to argue a point during the interview that runs counter to conventional wisdom. Don’t panic. No need to qualify your position – just make an argument. We only hire people who are capable of creative and critical thought. This requires you to consider alternate and even contrarian positions before deciding on a course of action. If we are hiring you for any of the jobs posted on this page, we want creativity. Bring it. You won’t offend us. Our clients' success comes from the creativity and resourcefulness of our team. We hire talented, passionate people who should feel empowered to speak up and defend their positions. Debate is always encouraged. An occasional argument is fine if it gets us to a better solution for our clients. Lets make sure that you are comfortable with this during your interview. The secret interview question is: "What is the 9th digit after the decimal point in pi?"